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Quasi-coherent states and the spectral resolution of the q-Bose 
field operator 

Daniel I Five1 
Center for Theoretical Physics, Department of Physics and Astronomy, University of 
Maryland, College Park, MO 20742.4111, USA 

Received 22 November 1990 

Abstract. The single mode q-Bose field far -1  s q < 1 is shown to be a bounded operator 
with a continuous spectrum lying in the interval between *(2/(1 -q))‘I2, thus becoming 
unbounded in the Bose limit (q- I ) .  The generalized eigenstates are determined in terms 
of q-Hermite polynomials whose properties are exploited to obtain orthonormality relations. 
It is observed that these are connected to important results in combinatorics. I t  is shown 
that the eigenstates are products of IWO q-expanentials of the q-creation operator acting 
an the Fack vacuum, in contrast to ordinary coherent states which involve only a single 
q-exponential of the creation operator. A method of representing operators in normal- 
ordered form based on this representation is described. The spectral resolution is employed 
to compute the asymptotic temporal behaviour of the particle number expectation value 
in states produced by coupling the q-Bose field to a source. It is shown that the limit does 
not commute with the limit q + 1. Specifically it is shown that for O S  q < 1 the asymptotic 
growth is linear i n  time in contrast to the quadratic growth for q = 1. 

1. Introduction 

It is known that in one or two space dimensions relativistic quantum field theory 
permits statistics other than Fermi and Bose, and this has been investigated for its 
intrinsic interest, in connection with Chern-Simons theories, and because of possible 
physical realization by ’anyons’ [1-3]. Without the constraint of locality one may also 
consider the possibility of anomalous statistics arising in any number of space 
dimensions (in particular three) induced by deforming the canonical Heisenberg 
commutation relations of the creation and annihilation operators. Certain deformations 
of this type provide realizations of quantum groups [4,5]. Deformations of the 
Heisenberg algebra also provide means of interpolating analytically between Fermi 
and Bose statistics [ 6 ] .  To construct quantum mechanical systems with such ‘intermedi- 
ate statistics’ we may employ the so-called ‘9-mutation’ relations defined as follows: 

[a,, a: ] ,  = a,, ( 1 )  

[A ,  B],-AB-qBA (2)  

where j ,  k label degrees of freedom, and the bracket is defined by 

with 9 = 1 for Bose and -1 for Fermi particles. In  [7] I proved that this is a satisfactory 
space for quantum mechanics in that all vectors have positive norms. 

In the present paper I wish to pursue the construction of quantum systems with 
intermediate statistics further, specifically to investigate some dynamical implications 
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of intermediate statistics produced by the 9-mutator deformation. Thus e.g. it is 
interesting to investigate the effect of small deviations from Fermi and Bose statistics 
which might conceivably be observed. There is extensive literature about the situation 
near 9 = -1, i.e. on experimental limits on possible violations of the Pauli principle 
by electrons [8]. Here we shall be concerned primarily with the bosonic side of the 9 
interval. Thus, if one wishes to discuss experimental limits on deviation of the photon 
from Bose statistics, one must have a dynamical model for q near 1, and one must 
determine the observable effects of the deviation from unity. 

In attempting to construct dynamical models for particles obeying q-mutator 
statistics for q near 1 it is natural to look for analogues of the creation of bosons by 
a source. Hence one is led to examine the analogue of the field operator, which, for 
a single mode, is 

& = ( a  +at ) /& ,  (3 )  
Here and in the following a and at will refer to the operators obeying the 9-mutation 
relations. This paper provides some necessary tools for constructing dynamical models 
for q-bosons in that it elucidates the properties of the & field. We will, however, only 
be concerned with a single mode, and will not confront the difficulties encountered in 
q-mutator theories with several modes. 

We note that & for 9 < 1 differs from the case 9 = 1 in several important ways. 
First of all its canonical conjugate is nor the operator 

which does not obey the canonical commutation relation with +,,. We must, therefore, 
find an operator T~ which is the correct canonical conjugate. Moreover the number 
operator N is no longer a'a, i.e. the latter does not satisfy 

& = ( a  - at)/i& (4) 

( 5 )  
Matrix elements of the number operator are of fundamental importance, and since 
the operator N will now be a complicated function of a and at ,  some effort will be 
required to compute these. 

Finally we note the most striking difference between & for q < 1 and bq for q = 1. 
In the former case the field is bounded while in the latter it is unbounded. To see this 
observe that the eigenvalues of at, are 

(6) 
with n = 0 ,1 , .  . . . Thus, for q < 1, this is bounded by (1  - 9)-' and so also is the field 
operator b.,. Note carefully that, in contrast, the particle number is unbounded for 
q < 1 as it is for 9 = 1. 

t t  [Nq, a ]  = -a and [N,, a ] = a  . 

flu = 1 f 4+4 '+ . ,  .+ q"-' = (1 - 9")/(1- q) 

We will see in section (2) that the spectrum of & lies in the interval 

- AoG A S  Ao (7) 

A o E  (2/1 -9))"2. (8) 

in which 

Moreover we shall see that the spectrum is continuous. The discrete spectrum is empty, 
so all of the eigenstates are generalized eigenstates, not proper eigenstates. In the 
following, however, we will often abuse language in the custom of physics and refer 
to them simply as eigenstates. 

In the basis of its eigenfunctions, & will be represented simply as multiplication 
by A. Hence its conjugate rq may formally be represented by -i d/dA. Although the 
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derivative is not defined at the endpoints of the spectrum, the spectral measure vanishes 
at the endpoints, so that we may identify the two endpoints. Equivalently we need 
only consider a space of functions of A which are periodic in A with period equal to 
the width of the spectrum. This suggests that the formalism will be simplified if we 
introduce an angular variable 8. Thus instead of bq we will work with the related 
operator 

+q GCOS-'(bqlAo) (9) 

o s e s T .  (10) 

with eigenstates belonging to eigenvalue 8 denoted IO), and 

The conjugate to +q, denoted p,,, may then be represented by -i d/d8 in the basis of 
8 wavefunctions. 

When we examine the projections ( n l 8 )  of the field eigenstates on the Fock space 
states In), we find that they are 9-Hermite polynomials. These play an important role 
in combinatorics, and we see in section 3 that certain formulas of importance in 
combinatorics have simple interpretations in terms of the orthogonality and complete- 
ness of the field eigenstates. 

Using the Fock space matrix elements we may also explore the most physically 
significant aspect of the boundedness of the field for 9 < 1, i.e. its effect on the growth 
ofthe particle number expectation value (.N1 in typical dynamical situations. Specifically 
we will discover that there is a non-commutativity in the limit of (A'") as 9 + 1 and the 
limit of (A") in a sequence of states for which it is becoming unbounded, e.g. in the states 

l(t))-e-""+) (11) 
which correspond to the production of particles by a c-number source for t+m. (Note 
that we absorb the parameter measuring the strength of the source into the time 
variable.) We shall show that the expectation value of the particle number in these 
states grows like t if q < 1,  but like t2 if 9 = 1. 

In section 4 we will see that when the eigenstate 10) is represented in Fock space 
in terms of the action Of powers of the creation operator at  on the Fock vacuum, a 
surprisingly concise expression is obtained of the following form: Coherent states for 
q = 1 are exponentials of a' on the vacuum. For 9 < 1 there is a natural 9-deformation 
of the exponential referred to as the 9-exponential, and there are states analogous to 
coherent states which are q-exponentials of at  acting on the Fock vacuum. The 
eigenstates 18) are not of this form, but are products of two q-exponentials acting on 
the Fock vacuum. One cannot combine 9-exponentials for q < 1 by adding the 
exponents as one does for q = 1, so that these do not simply reduce to 9-coherent 
states. We therefore refer to them as quasi-coherent states. Like the coherent states, 
they provide a simple method for expressing operators in normal product form. Since 
such expressions are of importance in constructing quantum field theories, we indicate 
how normal ordering is done with the quasi-coherent state formalism. We will argue 
that the quasi-coherent state formalism is likely to be more useful for 9 < 1 than the 
coherent state formalism. 

2. Spectral resolution of the field and its conjugate 

For 9 = 1, the algebra of the creation and annihilation operators (Heisenberg algebra) 
can be realized by combinations of the operators x and d/dx acting on a suitable 
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space of functions. It was disocovered long ago by Rogers [9, IO] that much of ordinary 
analysis can be generalized by replacing the derivative operator d /dx  with a '9- 
derivative' defined by 

All q-objects are obtained from 9 = 1 objects by using d,. Thus e.g. 

dpx" = nqx"-' 

where n4 is the q-deformation of the integer n, namely 

n4 = I + 9+ .  . .+ pl. 
The q-exponential is the solution of the equation 

d,e,(x) = e,(xj 

and is given by 

in which the q-factorial is 

n q ! =  nq' ( n  - l),,. , . I .  

All of the ingredients of analysis, e.g. tk integr: . an 111 of the i n 
have q-analogous which play an important role in combinatorial analysis. To simplify 
expressions it is useful to introduce the standard symbol (a; 4). which is related to 
the a-factorial, and the q-exponential: namely: 

(18) ( a ;  9). = ( l - a ) ( l - q a ) .  . . ( I - q " - ' a ) .  

Thus 

( q ; q ) . = ( I - q ) " n , !  (19) 

and 

( a ;  q ) : ' = e , ( a / ( l - q ) ) .  (20) 

e,(x)=(l -(I -q)x)-le,(qx). (21) 

The last relation is obtained by noting that (15) with the definition of d, gives 

This may be iterated and, with q <  1, and the boundary value e,,(O) = 1, yields 
m 

e,(x)= ll ( l - x q " ( l - q ) ) - ' = ( x ( l - 9 ) ;  9 h .  . (22) 
"-0 

Now we note that the algebra of creation and annihilation operators obeying the 
q-mutation relations can be realized as follows. Let f (x)  be a formal power series, 
and consider the action of the operators x and d, on these functions. Evidently 

[d,, XI, = 1 (23) 

where the bracket is the q-mutator bracket. Moreover, d, annihilates constants. Thus 
one can represent the q-mutator algebra on the space of formal power series by 
identifying a with d,, at  with x, and the vacuum with the number 1. No inner product 
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has been defined, so d, is not the adjoint of x. (The reader is cautioned that we are 
not representing a and ai by the same linear combination of x and d, as is done in 
the case 9 = 1 !) The point is that to compute eigenstates only the algebraic relationship 
between the a and at  needs to be reproduced. Thus, suppose that a generalized 
eigenstate of +,, belonging to the eigenvalue A is expressed in the q-Fock space by 

m 

I A ) =  1 a.a'"l0). (24) 
n =o 

Then iff(x) is a formal power series with the same coefficients, i.e. if 

it will have to satisfy the equation 

and conversely. 
Now from the definition of d, one then has 

f ( x ) = [ l  -A A(l-s )X+(  1 -q)2X2]-'f(qX) 

which may be iterated to produce 
m 

(28) 2 2n -1  f(x)= n ( l - f i A ( l - q ) x q " + ( l - q ) x  9 ) . 
" = O  

We may put this in a more familiar form by a change of variables. Let 

A (  8) = A. cos 0 (29) 

where 

A0= (2/(1- 9) )"2  (30) 

so that, in effect, we are determining the spectrum of the operator 

$,, = cos-'(+,/A,). (31) 

Let r = (1 - 9)'12x, and a, = ( 1  - 9)"I2b,. Then b, is the coefficient of rn  in the power 
series expansion of the product 

m 

P , ( r , c o s e ) =  n (I-2rq"cos e+r2q2") - l .  (32) 
"-0 

This product is a special case of the generating function for the ultra-spherical 
polynomials studied by Rogers [U]. The polynomials H.(cos el9) in cos 0 which it 
generates are called q-Hermite polynomials. Specifically one has the definition 

It is known [ 121 that these functions satisfy the orthogonality relation 
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in which 
m 

w ( y l q )  = (1 -y2)-1/2 n (1 -2 (2y ’ -  l)qk+q’k). (35) 
k = O  

Thus if we define 

(36) 

where 

In) = ( f14!)-’/2Q’n10) (37) 

are the normalized q-Fock states, and 

(nle)=(f(e) i (q;  q).)’12mcos 814) (38) 

with 

& ( o )  = ( 4 ;  q)ml(e”a; qM2/2.rr (39) 

we see that 10) will be an eigenstate of +q with eigenvalue A ( @ ) ,  and 

[ (ml 0)( 81 n) d 0 = S,, . (40) 

Note that for convenience we have absorbed the function f,( e), which characterizes 
the spectral measure, into the definition of the states IS). For later reference we observe 
that it has a double zero at  the boundaries of the spectrum, specifically 

(41) 

J O  

&(e) = Q,(o) sin’ e 
where 

a,(@) = ( 2 / x ) ( q :  q ) d q  elis: q ) J  (42) 

is non-vanishing on the entire spectrum. 

resolution of unity in projectors of the eigenstates of &,: 
Since the Fock-space states are complete, (40) shows that we have the desired 

I = / ~ l O ) ( S i d O .  (43) 

Thus the eigenvalues of I/J~ form a continuous spectrum with no discontinuities in the 
range OC O C n, i.e. the eigenvalues A of the field c$q are in 

- A u C A  <Au. (44) 

As expected this becomes unbounded as q +  1. 
Since wavefunctions in the theta basis are only defined on a finite A set, -i d/dA 

is not yet properly defined at the endpoints. Since the spectral measure f ,  goes to zero 
at the endpoints, however, we can simply identify the endpoints, or equivalently restrict 
to periodic functions with the spectrum as period. Thus if p4 denotes the canonical 
conjugate to $ j q j  I! Is represented by -i did@ in the 0 basis. To distinguish its eigenstates 
from the Fock states, which are also labelled by integers, we denote them l[kl) SO that 

( !~ l [k ] )= ( I / f i ) e”~’  k=O,1,2, . .  . . (45) 

(Note that the factor 2 is required because the theta range is ?r rather than 2v.1 
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It is interesting to note the connection between simple quantum mechanical manipu- 
lations and formulae in q-analysis that are often quite laborious to derive. Thus the 
relation 

(els') = s(e- 0') (46) 

which results from (43) is connected to a formula satisfied by the 9-Hermite functions 
which is a q generalization of the Mehler bilateral sum for the Hermite polynomials, 
namely [12] 

Inserting (38) into (47), and using the completeness of the Fock basis, (47) becomes 

In passing to the limit one must be careful with the singularities. Let U = 0 - 0' and 
U = 0 + 0'. There is a double pole at U = 0 when r +  1, but no singularity at U = 0. The 
reason is that since 0, 0' are non-negative, the latter can occur only if both 8 and 0' 
vanish. But in that case the function f, has a strong enough zero to cancel the pole 
(see (41)). Thus, setting r = e-' one obtains the singular factor 

lim ( & / ( e 2 + u 2 ) )  = 2 ? i ~ ( u )  (49) 
r - O f  

and (46) then appears. 
This calculation suggests that standard quantum mechanical manipulations may 

be 
9-Hermite function is an ingredient in the derivation by Rogers [ 10,111 ofthe celebrated 
Rogers-Ramanujan identities which are essential in Baxter's solution of the hard 
hexagon model [ 10, 141. 9-analysis identities are also essential in the theory of partitions 
[ I l l .  Equation (47) is itself known to have a combinatoric significance for 9 = 1, and 
it is suspected that the 9 extension does also [12]. We shall pursue this idea elsewhere 

!= pcaera!e q-ap&,sis ideaG:ics .4,h;ch are ?;ite ;e*ic;s to derive &rec;!y, The 

to Ob!2i!! a q.2nt.m mechanics! i!!!crprPt.a!inn of !hP nopPrs-li"n.j!a!! id.!?!i!i.S. 

3. Growth of particle number expectation values 

Consider a sequence of states produced by coupling the field 4q to a c-number current 
7. Thus let 

1(1)) = e"++)=e'7c"s*~~O) (50) 

with 

. r -hol .  (51) 

We should like to determine the behaviour of the particle number in such states as I 
becomes large. We can do this by computing one of the moments 

m 

N p ( t ) = ( ( t ) l - W ~ ) ) =  1 nPl(nl(t))12 ( 5 2 )  
" = U  



One approach to this computation is to use the known [12]  Fourier expansion of the 
H,, functions, namely 

However, since we are primarily interested in the large '7 behaviour, we may avoid 
unnecessary tedium with the following observation: Note that one could do the 
calculation by first computing (OIN'l6"). Equation (47) appears to offer a way of 
accomplishing this. Thus one might formally differentiate with respect to r and then 
pass to the limit r = 1 as we did to compute (010'). However, this is a very dangerous 
procedure and must be handled with great care because the distribution becomes very 
singular on test functions whose support includes the boundaries of the spectrum. 
Thus all interchanges of limits must be justified. However, this offers a clue to 
simplification for large 1. We notice that at the boundary of the spectrum, where 0 = O  
or T, the singular factor is the same for all q with Os q < 1. Basically this is because 
the order o f t h e  zero in the spectral measure near the boundaries (see (41)) is q 
independent. 

Thus if, in the computation of some matrix element, the dominant contribution 
comes from the boundaries of the spectrum, one will find, in first approximation, that 
the answer is the same for all q in 0 s  q < 1. Now in computing asymptotic values of 
the expectation value of N in the state l ( f ) )  for large 1, there will be oscillations in the 
integrations over the spectrum which will damp out the contribution except at the 
stationary points of the oscillating factor exp(-i.rcos e). Since these occur at the 
boundaries of the spectrum, we expect that the f dependence of the leading term in 
the asymptotic expansion will be the same for all q in Os q <  1. Hence to determine 
this we need only study the very simple case q = 0. Thus returning to (54) we notice that 

i i , (cos BiOj=sin(n+ijB/sin 6 ( 5 5 )  

and the integral (53) is found to be a Bessel function, specifically 

( f l l ( f ) )  = i"(fl +I)(T)-'J"+t(T). (56 )  

We now select a moment to evaluate which is easy to do, namely 

m 

(( t ) l ( N +  1 ) ~ 1 (  t ) ) =  ~ - ~ 1  ~ ' ( J . ( T ) ~ = ; ( T ) ~ + ~ .  (57) 
1 

This is a very interesting result. For q = 1 one finds that the asymptotic behaviour 
of ( ( N +  in the state 1(t)) goes like t4,  rather than 1'. Thus ( N )  will grow like f for 

q + 1 limit and the large particle number limit is clear from the divergence of the factor 
A, of T at q = 1. The effect of first taking q + 1 and afterwards 1 f m is evidently to 
replace the divergence in A,, with an extra power of f. This phenomenon is of such 
physical interest that I will pursue it at length in another paper. 

0s q < ! in.::& of !!'.e : 2  8: it do.: fo: q = 1. The na"-cn"u!ativity be!ween the 
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4. Quasi-coherent states and normal ordering 

Consider the way in which coherent states are used in field theory in the case 9 = 1. 
Suppose an operator A is given in Fock representation by 

Then A can be obtained in normal order by using the fact that the vacuum projector 
can be written in the form 

IO)(O~ = :e-"Y:. (59) 

Hence 

A= : A,,(m!n!)-"'a" e-"'" a " : .  (60) 
M.8 

This is not always the most convenient expression for normal ordering. Specifically, 
if we are quantizing a classical theory, the matrix elements of A are more simply 
expressed in the over-complete coherent state basis. Thus one obtains analogously: 

A =  : d r  d r *  A(r ,  r*) e'"'e-"'" elmo: (61) 

in which we have absorbed the normalization of the coherent states into the function 
A(z ,  z*). The form of A(r, r*) is an object one takes from the classical theory, because 
the coherent states describe the minimum packet states which behave quasi-classically. 
In a system of bosons, for example, large z corresponds to macroscopically occupied 
states characterizing the classical field, and thus A(z, z*)  can be inferred. 

When we seek q-analogues of these manipulations we note first that there is an 
analogue of ( 5 9 ) ,  namely 

lo)(ol= : e ; ' (a 'a ) : .  ( 6 2 )  

which is proved in the appendix. Now the 9 analogue of the coherent state is e,(ra')lO), 
and one can derive a q-analogue of the familiar over-completeness relation. Thus with 
(62) one can give a normal form representation of an operator in the q-Fock space 
identical in form to (61). 

However, this q-normal form is not likely to be useful for 9 < 1 for the following 
reason. The coherent state normal ordering was desirable for q = 1 because the matrix 
elements of A between coherent states are related to classical behaviour when z is 
large. But as we saw in the last section, there are peculiar differences between the 
behaviour of objects like the number operator (which is an ingredient of the 
Hamiltonian) for q c 1 and for q = 1 so that one cannot expect the classical situation 
to provide a reasonable guide to quantization. We therefore must find a replacement 
for the q-analogue of (61). 

J 

We discover one by observing that the generating function (32) factorizes as 
m 

P,(r,cos 0) = n 11-rq" e'B12=I(re'a; 9)m12=le,(re'a/(1-q))12. (63) 
"=a 

Hence we see that 

le)= %(s,a')lo) 
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where we have defined 

%,(e, a t ) = e , ( z a t ) e , ( z * a t )  

z =eia/(  1 - q)'I2. 

with 

Thus, in contrast to the q-coherent states which are q-exponentials of the creation 
operator acting on the vacuum, here one has a product of two q-exponentials of the 
q creation operator which we call g,,, The Kq exponential does not combine its 
exponents on multiplication, so this does not reduce to a single e,,. We therefore call 
these states quasi-coherent states. 

Using this representation, the resolution of unity (43), and (62), we obtain a new 
way of normal ordering. Thus for any operator A we have 

A =  :I: I : d B d B ' ( B I A I B ' ~ ~ ~ ( B , o ' ) e , ' ( o ' a ) ~ ~ ( - B ' , ) a ) : .  (66) 

If an operator, A, e.g. some Hamiltonian, is expressed in terms of the field, its 
matrix elements (8lAlO') between eigenstates of the field, which is all that is needed in 
(66), are immediately given. Thus this provides a simple normal ordering technique 
which may be used in making a field theory for q s 1. The next task is to find the 
q-analogue of the functional integral, upon which work is in progress. 

5. Conclusions 

Having now understood the mathematical structure of the q-Bose field operator for a 
single mode, we are in a position to move one step forward in the difficult task of 
constructing a complete dynamical theory for particles obeying intermediate statistics. 
This task has two parts: first to construct a complete theory for a single mode, and 
next to extend this to a multimode theory. We have seen that, even for a single mode, 
the effect of the boundedness of the q-Bose field is manifest in peculiarities of behaviour 
for states with large particle number. Thus it is to be expected that some weak form 
of the Pauli principle will make its appearance when q deviates from unity. This is 
discussed by the author in another paper [151. 

The problem of multimode fields is very difficult because, unlike in the q-deforma- 
tions used in connection with quantum groups [4] ,  the qmutator relations (1) deform 
the Heisenberg relations for distinct modes as well as for identical modes. Some 
progress in developing techniques for the multimode problem have been reported 
recently by Greenberg [161. 
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Appendix 

Proof of the identity: 

l0)(01= : e ; ' ( a + a ) :  
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First we show that 

e;'(x) = e,/,,-x). 

To see this note that from the Leibnitz rule for d,, namely [ 5 ]  

d,(f(x)g(x)) = f ( v )  d,g(x) + (d,f(x))g(x) 

d,(e;'(x)e,(x)) = O  

together with 

one obtains 

d,(e;'(x)) = -e;'(qx). 

But for any function 

dqf(x) = d,,.J(qx) 

so 

d,e~/,(-x) = d,/,e,/,(-qx) = -e,/,(-qx) (A7) 
which has the same form as (5). 

value at x = 0, which proves (2). 
Next one notes that 

Thus both sides of (2) have the same infinite product (see (21), (22)), and the same 

(AS) 
"-1 

nvq = " J 4  

n , / q ! =  "q!/q"("-"/2, (A91 

so that 

Thus form (2) 
m 

Inq!.  (A101 e;'(x) = 1 ( - x ) " q " ' " - " / 2  

n=" 

Finally observe that the q binomial coefficient satisfies the q-Pascal triangle identity 

whence, by induction, there follows 

But 

(nl a'a +'I m) = 6,.n, !/ ( n  - j ) ,  ! 

whence from (12) 

(nl:e;'(a+a): Im) = 6,06,0 

which proves (A l ) .  
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